Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Screening and Mechanism of Antagonist Peptide for CC Chemokine Receptor 1 (CCR1) Derived from Viral Macrophage Inflammatory Protein II

Sha Liu, Qing Ding, Pijin Wei, Hanxiao Sun , Xiuying Li, Guijie An, Yan Yang, Jingguang Zhou

Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China;

For correspondence:-  Hanxiao Sun   Email: sunhx718@163.com   Tel:+8602038375022

Received: 11 February 2014        Accepted: 20 April 2014        Published: 23 May 2014

Citation: Liu S, Ding Q, Wei P, Sun H, Li X, An G, et al. Screening and Mechanism of Antagonist Peptide for CC Chemokine Receptor 1 (CCR1) Derived from Viral Macrophage Inflammatory Protein II. Trop J Pharm Res 2014; 13(5):697-704 doi: 10.4314/tjpr.v13i5.7

© 2014 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To search for effective antagonist peptide of CC chemokine receptor 1 (CCR1), and evaluate the potential role and mechanism of peptide C18P derived from viral macrophage inflammatory protein II (vMIP-II).
Methods: Alignment, simulated peptide-cut, bioinformatics and protease digestion were used to screen and prepare antagonist peptide. Interactions between C18P and CCR1 were determined by radioligand binding assays and [35S]GTPγS binding experiment. Chemotaxis assay was utilized to assess the potency for inducing or inhibiting peripheral blood mononuclear cells (PBMCs) migration. Ligand-induced intracellular calcium mobilization was tested by flow cytometry.
Results: A peptide containing 18 amino acids (C18P) was screened. C18P bound to CCR1 with a Kd of 5.7 ng/ml and displaced 125I-labeled MIP-1α and 125I-labeled RANTES on human CCR1-transfected HEK293 cells (IC50 = 11.2 and 9.6 ng/ml, respectively) in radioligand binding studies. C18P lacked intrinsic agonist activity but strongly inhibited HCC-1 (100 nM) induced [35S]GTPγS binding (IC50 = 3.7 ug/ml), chemotaxis induced by HCC-1, MIP-1α and RANTES (IC50 = 23, 25 and 13.1 ng/ml, respectively), and intracellular calcium mobilization.
Conclusion: These results demonstrate that bioinformatics and protease digestion are feasible to screen and prepare C18P, and that C18P is a novel and specific small molecule peptide antagonist of CCR1 with therapeutic potential for preventing cell migration.

Keywords: CC Chemokine receptor 1; Simulated peptide-cut; Antagonist peptide; Viral macrophage inflammatory protein II; Bioinformatics; Protease digestion; HEK2

Impact Factor
Thompson Reuters (ISI): 0.523 (2021)
H-5 index (Google Scholar): 39 (2021)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates